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a b s t r a c t

MITNS (Multiple-Ion Transport Numerical Solver) is a new numerical tool designed to perform 1D
simulations of classical cross-field transport in magnetized plasmas. Its detailed treatment of multi-
species effects makes it a unique tool in the field. We describe the physical model it simulates, as well
as its numerical implementation and performance.
Program summary
Program Title: MITNS (Multiple-Ion Transport Numerical Solver)
CPC Library link to program files: http://dx.doi.org/10.17632/9n8fjzxsyn.1
Licensing provisions: MIT
Programming language: C++, with Python wrapper
Nature of problem: Classical transport of multiple-species plasma across a magnetic field. This includes
the collisional transport of particles, momentum, and heat. These quantities are tracked separately for
each particle species. Both ion–ion and ion–electron interactions are included, as is the evolution of
the magnetic field.
Solution method: The system of PDEs is decomposed into a large system of coupled ODEs. The code
uses finite-volume discretization for space. Time integration is done using any of three timestepping
methods, including Adams–Moulton and Backwards Differentiation Formula schemes from the CVODE
package [1, 2].
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1. Introduction

MITNS is a 1D multiple-fluid simulation code designed to
tudy classical cross-field transport physics, with a particular fo-
us on plasmas containing multiple ion species. Multiple-species
ross-field transport problems are important across a wide range
f plasma applications, including nuclear fusion devices like toka-
aks [1–4], stellarators [5–7], and various pinch configurations

8–12], and non-fusion technologies like plasma mass filters
13–17]. MITNS is designed specifically to simulate classical trans-
ort, which means that it is not designed to study regimes
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controlled by ‘‘anomalous" transport (e.g., due to turbulence)
or the neoclassical effects that can arise in toroidal systems.
Hence, MITNS is not primarily intended for tokamak or stellarator
applications.

There are other plasma simulation codes that include related
physics in one form or another. For instance, the GBS code
simulates the Braginskii two-fluid equations (that is, for a sin-
gle ion fluid and electrons) [18]. Other authors have worked
with multiple-fluid simulations that include neutrals and one
ion species [19,20]. B2.5, UEDGE, and EDGE2D/U all use N-fluid
models to track different ion species’ densities and momenta
independently; these codes assume that all ion species share a
single temperature profile and their physical models for cross-
field transport are anomalous rather than classical [21–26]. There
has also been significant computational work using N-fluid mod-
ls to simulate unmagnetized multiple-ion plasmas [27–29]. To
he authors’ knowledge, there is no established code designed
o simulate classical N-fluid cross-field transport, including inde-
endent densities, velocities, and temperatures, for an arbitrary
umber of species.
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Fig. 1. This schematic shows the basic geometry and coordinates used in MITNS.

MITNS does not model complex magnetic geometries, like a
okamak or a stellarator. Rather, it is designed to capture, isolate,
nd aid in the understanding of the fundamental physics of classi-
al cross-field transport in mixed-species plasmas. Thus it models
deliberately simple 1D geometry, without effects like transport
arallel to the magnetic field or interactions with plasma-facing
omponents.
This paper describes in detail the MITNS code: its model, its

ssumptions, and its numerical properties. As other studies begin
o be released that rely on MITNS [30], this paper serves as
more detailed description of the code than would gracefully

it elsewhere. That includes a description of the physical model
s well as its underlying caveats and domains of applicability.
ections 2 and 3 describe the physical model that MITNS sim-
lates. Section 4 discusses the ways in which the code allows
ifferent physical phenomena to be turned off or scaled up and
own. These details may be intrinsically interesting to others
orking on similar numerical problems; in particular, the imple-
entation of the scalable thermal conductivity involves nontrivial
hysics and could be applicable to other codes.
MITNS uses finite-volume spatial discretization. It can per-

orm time integration using any of three schemes: fourth-order
unge–Kutta (RK4), Adams–Moulton (AM), and Backwards Differ-
ntiation Formula (BDF). It relies on components of the SUNDIALS
uite, including some data structures and implementations of the
M and BDF time integration [31,32]. The implementation of the
ode is described in Section 5 and its performance is discussed in
ection 6.

. Physical model equations

MITNS simulates 1D cross-field transport in a simple slab
eometry. The coordinates are chosen so that the magnetic field is
n the ẑ direction and all gradients are in the x̂ direction. Velocities
re assumed to be in the perpendicular (x̂ and ŷ) directions. This

geometry is shown schematically in Fig. 1. MITNS tracks and
evolves the density, pressure, and velocity profiles of each particle
species as well as evolving the magnetic field.

2.1. Density and momentum

For each species s, the evolution of the density ns is specified
by a continuity equation

∂ns
+ ∇ ·

(
nsvs

)
= 0. (1)
∂t
The ion velocities vi evolve according to the momentum equation:

∂

∂t
(minivi) + ∇pi + ∇ · (πi + minivivi)

= Zieni(E + vi × B) + mini

∑
s

νis(vs − vi) + fth,i

+ minig. (2)

ere pi is the scalar pressure, πi is the viscosity tensor, Zi is the ion
harge state, e is the elementary charge, E is the electric field, B is
he magnetic field,mi is the ion mass, νis is the collision frequency
f species iwith species s, fth,i is the thermal friction force density,
nd g(t, x) is the gravitational acceleration.
The collision frequency νab for a species a due to interactions

ith a species b is given for any a and b (including ions and
lectrons) by [33]:

ab =

(√
2e4 logΛ

12π3/2ϵ2
0

)(
Z2
a Z

2
b
ma + mb

m2
amb

)(
mbTa + maTb

mamb

)−3/2

nb ,

(3)

here logΛ is the Coulomb logarithm and Ts = ps/ns is the
emperature of species s.

The cross-field thermal force density on species a can be
ritten as [1]:

th,a =

∑
b

3
2
naνab

Ωa

1
1 + (maTb/mbTa)

(
b̂×∇Ta−

Za
Zb

ma

mb

Tb
Ta

b̂×∇Tb

)
,

(4)

where b̂ is the unit vector in the direction of B. For systems with
temperature gradients parallel to B, which are not considered
here, there would be additional temperature-dependent force
densities [34].

The cross-field viscous forces in a magnetized plasma tend
to be much smaller than the other forces, in addition to being
quite complicated [34], especially in the low-flow case [35,36].
However, the plasma cannot relax to the global thermodynamic
equilibrium without the inclusion of some viscosity to relax the
flow shear. Thus, we include only the multiple-species analog of
the Braginskii η1 component of the viscosity tensor, which is both
the simplest and most dominant viscous contribution in systems
with geometric symmetries and very small x̂-directed flows [37].
n the case of a slab with all gradients in the x̂ direction, the
raginskii viscous force density reduces to:

· πi = −
∂

∂x

(
3piνii

10
√
2Ω2

i

∂viy

∂x

)
ŷ, (5)

here Ωi
.
= ZieB/mi is the ion gyrofrequency. The analogous ex-

ression for a multiple-ion plasma, as presented by Zhdanov [38],
an be written as

· πa = −
∂

∂x

[
pa

4Ω2
a

∑
b

√
2mambνab

(ma + mb)2

(
6
5
mb

ma
+ 2−

4
5
mb

ma

Za
Zb

)
∂vay

∂x

]
ŷ.

(6)

A more detailed discussion of viscosity, including the terms ne-
glected by MITNS, can be found in the Appendix.

In the force balance equation for electrons, analogous to
Eq. (2), the small electron mass means that the inertial term
and the electron viscosity can be ignored. In the slab geometry
considered, dropping the inertial term is physically equivalent to
the assumption that electron force balance is fast enough to be
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considered instantaneous. The resulting momentum equation is

0 = −eE − eve × B −
∇pe
ne

+

∑
i

meνei(vi − ve) +
fth,e

ne
, (7)

which determines the electric field E.
Thus, the continuity and momentum equations determine

the evolution of the ion density and ion velocities, and self-
consistently determine the electric field.

2.2. Heat

MITNS models the pressure evolution for each species s by

∂

∂t

(
3
2
ps

)
+ ∇ ·

(
qs⊥ +

5
2
psvs

)
= vs · ∇ps

+

∑
s′

3msnsνss′

ms + ms′

(
Ts′ − Ts

)
− πs : ∇vs

+

∑
s′

msms′nsνss′

ms + ms′
(vs′ − vs)

·

(
vs′ − vs +

3b̂
2ZsZs′eB

×
Zs′ms′Ts∇Ts − ZsmsTs′∇Ts′

ms′Ts + msTs′

)
. (8)

The cross-field heat flux qs⊥ can be written as [1]:

qs⊥ =
5ps

2msΩs
b̂ × ∇Ts

+
ps
Ωs

∑
s′

νss′

1 + (msTs′/ms′Ts)

{
3
2
(vs − vs′ ) × b̂

−
ms′

ms + ms′

[ (
13
4

+ 4
msTs′
ms′Ts

+
15
2

m2
s T

2
s′

m2
s′T

2
s

)
∇⊥Ts
msΩs

−
27
4

ms

ms′

∇⊥Ts′
msΩs

]}
. (9)

The physics behind this expression, including the appearance of
the velocity terms, is discussed in greater detail in Section 4.

A discussion of the viscous heating, and the approximations
used by MITNS in modeling it, can be found in the Appendix.
Ultimately, MITNS models the viscous heating for ion species i
by:

−πi : ∇vi =
pi

4Ω2
i

∑
s

√
2mimsνis

(mi + ms)2

(
6
5
ms

mi
+2−

4
5
ms

mi

Zi
Zs

)(
∂viy

∂x

)2

.

(10)

his expression works equally well for the case when ms and
i are comparable and the case when one is much larger than
he other. The corresponding expression for electrons would be
egligible due to the smallness of the electron–ion mass ratio, so
t is not included in the code.

The last term in Eq. (8) (written as a sum over s′) is the
rictional heating. The total frictional heating due to interactions
etween species s and s′ — that is, including both the heating of s
ue to collisions with s′ and the heating of s′ due to collisions with
— is determined by energy conservation [39]. The expression
sed here splits the frictional heating going into s and that going
nto s′ so that each species receives a share that is inversely
roportional to its mass. This is the simplest expression that
atisfies energy conservation while also matching Braginskii’s
arge-mass-ratio limit. Moreover, the dependence of the frictional
eating on mass can be recovered by considering, e.g., the energy
ransfer associated with a binary collision between two particles
f different masses.
 q
It is sometimes helpful to understand which of these terms
are associated with reversible processes and which are associated
with irreversible processes. In the absence of any external source
terms (such as a particle source), the entropy production rate for
species s can be written as [39]

Θs =
Ws

Ts
−

πs : ∇vs
Ts

−
qs⊥

Ts
·
∇Ts
Ts

, (11)

where Ws consists of the second and fourth terms of the RHS of
Eq. (8) — that is, the inter-species temperature equilibration and
the frictional heating. Note that it is possible to have collisional
particle transport without producing more than an infinitesimal
amount of entropy. For instance, the collisional particle trans-
port due to flow friction will be linear in (vs′y − vsy) whereas
the associated heating and entropy production are quadratic in
(vs′y − vsy), so sufficiently slow cross-field particle transport will
be associated with vanishingly small time-integrated entropy
production.

2.3. Maxwell equations

The remaining governing equations can be obtained from
Maxwell’s equations. The magnetic field evolves according to
Faraday’s law of induction:

∂B
∂t

= −∇ × E. (12)

ote that if all gradients are in the x̂ direction, if Ez = 0, and if
is initially in the ẑ direction, then Eq. (12) implies that B will

emain purely in the ẑ direction for all time.
The electron velocities can be determined from Ampère’s law.

n a plasma where the Alfvén velocity vA is much smaller than the
peed of light, the displacement current is an O(v2

A/c
2) correction

nd can be neglected, so that Ampère’s law becomes:

× B = eµ0

(∑
i

Zinivi − neve
)

. (13)

ince the evolution of B and vi are already determined, this can
e used to obtain ve. Moreover, since B = Bẑ and all gradients are
n the x̂ direction, the x̂ component of Eq. (13) becomes

ex =
1
ne

∑
i

Zinivix. (14)

his allows the electron continuity equation given by Eq. (1) to
e rewritten as
∂

∂t

(
ne −

∑
i

Zini

)
= 0. (15)

If the plasma is initially quasineutral, then this can be replaced
(for all times) with a simple quasineutrality condition:

ne =

∑
i

Zini. (16)

Thus, Maxwell’s equations and quasineutrality determine the
evolution of the magnetic field, and self-consistently determine
the electron density and velocity.

3. Normalization and dimensionless parameters

Physical parameters are normalized to characteristic values,
such as the characteristic density n0, temperature T0, and mag-
etic field B0. The ion mass is normalized to mp, the proton mass.
efine the characteristic proton thermal velocity and gyrofre-
uency by v

.
=

√
T /m and Ω

.
= eB /m , respectively. Then
thp0 0 p p0 0 p
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efine the following normalized quantities:

˜ s
.
=

ns

n0
(17)

˜s
.
=

Ts
T0

(18)

p̃s
.
=

ps
n0T0

(19)

˜
.
= Ωp0t (20)
∂

∂ x̃
.
=

vthp0

Ωp0

∂

∂x
(21)

ṽs
.
=

vs
vthp0

(22)

Ẽ .
=

E
vthp0B0

(23)

B̃ .
=

B
B0

(24)

G(t̃, x̃) .
=

g(t, x) · x̂
Ωp0vthp0

. (25)

n0, T0, B0, vthp0, and Ωp0 will not appear explicitly in the governing
quations, except in a few combinations. These will be the physi-
ally relevant dimensionless parameters for the simulations. First,
ach species is associated with a gyrofrequency ratio

s
.
=

ZseB0

msΩp0
(26)

(here and elsewhere, use Zs = −1 for electrons).
To evaluate the inverse Hall parameter νab/Ωp0 for species a

and b, it is convenient to decompose the inverse Hall parameter
into a part which is a global constant for all species; a part
which depends on the choice of species but not on any spatially
local information; and a part that depends on local values of the
densities and temperatures. As such, let

C0
.
=

(√
2e4 logΛ

12π3/2ϵ2
0

)(
n0

m1/2
p T 3/2

0 Ωp0

)
(27)

nd

ab
.
= Z2

a Z
2
b

√
mb

ma

mp

ma + mb
(28)

so that, as per Eq. (3),

νab

Ωp0
= C0 Cab

(
mbT̃a + maT̃b
ma + mb

)−3/2

ñb. (29)

The last major dimensionless parameter, which appears in the
nondimensional form of Ampère’s law, is defined by

A .
=

B2
0

µ0n0T0
. (30)

Physically, A can be interpreted as twice the inverse plasma β ,
evaluated at the characteristic density, temperature, and mag-
netic field (n0, T0, and B0, respectively), where β is the ratio of
the plasma pressure to the magnetic field energy density.

The governing equations of the system can be rewritten in
terms of these dimensionless quantities. The ion density evolu-
tion described by Eq. (1) becomes

∂ ñi

∂ t̃
= −

∂

∂ x̃

(
ñiṽix

)
. (31)

The electron density is set instantaneously by Eq. (16), which
becomes

ñe =

∑
Ziñi. (32)
i t
Eq. (2) defines the evolution of the ion momenta. Its x̂ component
can be written as
∂ṽix

∂ t̃
= −ṽix

∂ṽix

∂ x̃
+ Wi(Ẽx + ṽiyB̃) −

mp

mi

1
ñi

∂ p̃i
∂ x̃

+

∑
s

C0Cisñs

(
msT̃i + miT̃s
ms + mi

)−3/2

(ṽsx − ṽix) + G

(33)

nd its ŷ component is

∂ṽiy

∂ t̃
= −ṽix

∂ṽiy

∂ x̃
+ Ws(Ẽy − ṽixB̃)

+

√
2C0

4Z2
i ñi

m2
i

m2
p

∂

∂ x̃

[
p̃i
B̃2

∑
s

msmpCisñs

(mi + ms)2

(
msT̃i + miT̃s
ms + mi

)−3/2

×

(
6
5
ms

mi
+ 2 −

4
5
ms

mi

Zi
Zs

)
∂ṽiy

∂ x̃

]
+

∑
s

C0Cisñs

(
msT̃i + miT̃s
ms + mi

)−3/2

×

[
(ṽsy − ṽiy) +

3
2

1

ZiB̃

1

1 + (miT̃s/msT̃i)

×

(
∂ T̃i
∂ x̃

−
ZimiT̃s
ZsmsT̃i

∂ T̃s
∂ x̃

) ]
. (34)

he electron velocities are set by Eq. (13), which is

˜ex =
1
ñe

∑
i

Ziñiṽix (35)

and

ṽey =
A
ñe

∂ B̃
∂ x̃

+
1
ñe

∑
i

Ziñiṽiy. (36)

Pressure evolution is set for all species by Eq. (8). This can be
written as
∂ p̃s
∂ t̃

= −
5
3

∂

∂ x̃

(
ṽsxp̃s

)
+

2
3
ṽsx

∂ p̃s
∂ x̃

+
∂

∂ x̃
ms/mp

ZsB̃

∑
s′

p̃sñs′

1 + (msT̃s′/ms′ T̃s)
C0Css′

(
ms′ T̃s + msT̃s′
ms + ms′

)−3/2

×

{
ṽsy − ṽs′y −

ms′

ms + ms′

1

ZsB̃

×

[(
13
6

+
8
3
msT̃s′

ms′ T̃s
+ 5

m2
s T̃

2
s′

m2
s′ T̃

2
s

)
∂ T̃s
∂ x̃

−
9
2

ms

ms′

∂ T̃s′
∂ x̃

] }
+

∑
s′

2msñsñs′

ms + ms′
C0Css′

(
ms′ T̃s + msT̃s′
ms + ms′

)−3/2 {
T̃s′ − T̃s

+
1
3
ms′

mp

[
(ṽs′x − ṽsx)2 + (ṽs′y − ṽsy)2

+
3(ṽs′y − ṽsy)

2ZsZs′ B̃

Zs′ms′ T̃s∂x̃T̃s − ZsmsT̃s′∂x̃T̃s′

ms′ T̃s + msT̃s′

]}
+

√
2
6

p̃s
Z2
s B̃2

m2
s

m2
p

(
∂ṽsy

∂ x̃

)2

×

∑
s′

msms′ ñs′

(ms + ms′ )2
C0Css′

(
ms′ T̃s + msT̃s′
ms + ms′

)−3/2

×

(
6
5
ms′

ms
+ 2 −

4
5
ms′

ms

Zs
Zs′

)
, (37)

here the final term (the viscous heating) is neglected for elec-
rons. The magnetic field evolution, which is described by Eq. (12),
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can be written as

∂ B̃
∂ t̃

= −
∂ Ẽy
∂ x̃

. (38)

Finally, the electric field, which is set by Eq. (7), can be expressed
as

Ẽx = −ṽeyB̃ −
1
ñe

∂ p̃e
∂ x̃

+
me

mp

∑
i

C0CeiñiT̃−3/2
e (ṽix − ṽex) (39)

nd

˜y = ṽexB̃ +
me

mp

∑
i

C0CeiñiT̃−3/2
e

[
(ṽiy − ṽey) −

3
2
1

B̃

∂ T̃e
∂ x̃

]
. (40)

. Tunable physics and the Ettingshausen effect

It is often very useful to be able to turn on or turn off different
hysical effects in a simulation. MITNS includes a number of
ptions to either turn off or to continuously scale down different
hysical effects (or to scale them up). Most of these are quite
imple. For instance, MITNS has a flag which can turn off tem-
erature evolution, so that Ts = T0 = constant for all species.

It also has a parameter that can scale the electron collisionality,
which it accomplishes by sending Cie → αCie and Cei → αCei
for all ion species i. This is particularly useful when studying
physics that relies on the separation between the ion–ion and
ion–electron collisional timescales. Similarly, it has a viscosity
scaling parameter which sends ∇·πi → ∇·απi in the momentum
equation and −πi : ∇vi → −απi : ∇vi in the heat equation.

One feature of MITNS which is useful but physically nontrivial
is the way in which it scales the thermal conductivity. When
studying effects which deposit heat in different regions of the
plasma, it is sometimes desirable to see what the temperature
profiles would look like if the cross-field conductivity were re-
duced or removed. The collisional part of the particle flux Γs and
the heat flux qs (not including the effects of viscosity) can be
expressed as(

Γs
qs

)
collisional

=

(
A11 A12
A21 A22

)(
{vs − vs′}
{∇Ts′}

)
, (41)

where the components Ajk are written as vectors because the
collisional fluxes for species s will depend on the velocities and
temperature gradients of all species s′. When seeking to scale the
cross-field conductivity by some factor α, the most immediately
intuitive solution would be to take(
A11 A12
A21 A22

)
?

−→

(
A11 A12
A21 αA22

)
. (42)

As it turns out, this is not the right approach, and in general the
resulting system will be unstable.

To see why, consider the physics of the Ettingshausen effect.
The Ettingshausen effect is generally invoked to explain the ap-
pearance of vs−vs′ terms in the heat flux (that is, the A21 terms in
the transport matrix) [33,34]. It provides the Onsager-symmetric
heat flux to correspond with the thermal force. The effect follows
from the dependence of collisionality on kinetic energy. Higher-
energy particles tend to be less collisional, so if collisions are
driving a particle flux, the flux will tend to preferentially move
lower-energy particles. This results in a heat flux in the direction
opposite that of the collisional particle flux.

However, the collisional particle flux also has a component
that depends on temperature gradients (A12). This results from
thermal friction, and is also essentially the result of the tempera-
ture dependence of the collision frequency [33,34]. If the particle
flux depends on ∇Ts′ via thermal friction, and the heat flux has
a part that depends on the particle flux via the Ettingshausen
effect, then there is a temperature gradient-dependent heat flux
(part of A22) that is not due to heat conduction at all but rather
to energy-dependent particle fluxes that happen to be driven by
temperature gradients.

As the system approaches equilibrium, the net collisional par-
ticle fluxes will become small. The collisional cross-field flux for
species a can be obtained from the x̂ component of Eq. (2):

Γ collisional
s = ns

∑
s′

νss′

Ωs

[
(vs′y − vsy)+

3
2ZsZs′eB

Zs′ms′TsT ′
s − ZsmsTs′T ′

s′

ms′Ts + msTs′

]
.

(43)

t is sometimes convenient to denote the individual terms in this
um by Γss′ , so that Γ collisional

s =
∑

s′ Γss′ . If Γ collisional
s ≈ 0, then the

velocity differences (vs′y −vsy) – and, by extension, the collisional
heat flux term A21 · {vs − vs′} in Eq. (41) — will be approximately
proportional to some combination of the temperature gradients
∇Ts. Depending on the particular scenario being simulated, this
means that the A21 · {vs − vs′} heat flux can act either as a heat
diffusion or as an anti-diffusion. If the coefficient A22 has been
removed, then the system is missing its conventional cross-field
thermal conductivity and the Ettingshausen T ′

s heat flux. The first
of these is diffusive and the second tends to cancel the A21 heat
flux when the system is close to equilibrium. If the A21 heat
flux is anti-diffusive, and if A22 has been removed or sufficiently
reduced, then the system will be unstable.

In order to scale down the cross-field conductivity without
making the system unstable, the solution is evidently to keep
some T ′

s-dependent heat flux from A22 in order to cancel the
potentially antidiffusive contribution from A21. However, there
is no single unambiguously correct way of splitting A22. One
option would be to keep the part of A22 that comes from the
Ettingshausen effect; one might expect a combined heat flux term
that looks like qs, Ettingshausen ∼ T 2

s ∂Γs/∂Ts (since the Etting-
shausen effect arises from the difference in fluxes for hotter and
colder particles). The prospect of partitioning the heat conduc-
tivity based on the underlying physical mechanisms is appealing.
However, this approach has a downside: the contributions to Γs
from the flow friction and the thermal friction scale differently
with Ts, so ∂Γss′/∂Ts does not necessarily vanish when Γss′ → 0.

An alternative approach – and the one that is implemented
in MITNS – is instead to split A22 based on the criterion that the
heat flux due to collisions between species s and s′ should vanish
when the corresponding particle flux Γss′ does:

qsx → −
3Ts
2

∑
s′

Γss′

1 + (msTs′/ms′Ts)

− α ·
ps
Ωs

∑
s′

νss′

1 + (msTs′/ms′Ts)

×

{
ms′

ms + ms′

[ (
13
4

+ 4
msTs′
ms′Ts

+
15
2

m2
s T

2
s′

m2
s′T

2
s

)
×

∂xTs
msΩs

−
27
4

ms

ms′

∂xTs′
msΩs

]
+

9
4

ms′Ts
ms′Ts + msTs′

∂xTs
msΩs

−
9
4
Zs
Zs′

msTs′
ms′Ts + msTs′

∂xTs′
msΩs

}
. (44)

Eq. (44) reduces to the full heat flux given in Eq. (9) when α =

1. When α → 0, each term in the sum vanishes when Γss′

does. Moreover, the Onsager symmetry between A12 and A21 is
preserved for any choice of α. Eq. (44) is arguably the simplest
possible expression with all of these properties.
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able 1
entering and boundary symmetries for the various variables in MITNS. The elec-
romagnetic variables can be understood by comparing to the field configuration
or Yee’s PIC scheme [40].
Variable Centering Boundary symmetry

ns Cell Symmetric
Ts Cell Symmetric
vsx Edge Antisymmetric
vsy Cell Antisymmetric
Ex Cell Antisymmetric
Ey Edge Antisymmetic
Bz Cell Symmetric

5. Numerical implementation

The current version of MITNS discretizes space using a uniform
D grid. Some physical quantities (ns, vsy, Ts, ps, B, and Ex) are
racked in the interior of each grid cell; others (vsx and Ey) are
tracked on the edges. The electron density, electron velocity,
electric field, and the temperatures can all be inferred at any
given time from other quantities, so MITNS only needs to store
and evolve the ion densities ni, ion velocities vix and viy, all
species’ pressures ps, and the magnetic field B. As a result, for a
simulation with Ng grid cells and Ni ion species, MITNS solves a
coupled system of (4Ni + 2)Ng + Ni ODEs.

When a cell-centered value is required for a quantity that
is tracked on cell edges (or vice versa), the value is linearly
interpolated from its two neighboring edges (or cells). Spatial
derivatives are implemented using a centered second-order finite
difference, where the derivative of a cell-centered quantity is
defined as being edge-centered and vice versa. As a result, the
system of ODEs has a banded structure, with the evolution of
the dynamical variables in any given cell (or on any given edge)
depending only on the values in their own cell (or on their own
edge) and on the values in both the nearest-neighbor cells and
the nearest-neighbor edges. Of course, the structure is slightly
different for boundary cells and edges. The simulations enforce
boundary conditions that do not allow flux through the top or
bottom of the system, so vsx and the heat flux qsx vanish on the
boundary edges. These boundary conditions have the advantage
that they are physically simple. Moreover, they are reasonable
approximations for a range of systems (for example, the outer
liner in a compression experiment or, in a simplified limit, the
boundary of a magnetically confined plasma).

In the current version of the code, this no-flux condition is
enforced by treating the system as mirror-symmetric at each
boundary. This means that the quantities ns, Ts, and Bz are sym-
metric at each boundary, while the quantities vsx, vsy, Ey, and Ex
are antisymmetric at each boundary. These boundary symmetries
must be handled differently for cell and edge centered values.
For cell-centered values, the first ghost cell must be equal to the
boundary cell, while for edge-centered values, the first ghost edge
must be equal to the second-to-last edge from the boundary. The
centering and boundary symmetries of each variable are listed in
Table 1.

In order to evolve this system of coupled ODEs in time, MITNS
can use any of three solvers. The first is a fourth-order Runge–
Kutta solver; it is typically the slowest of the three, but its relative
simplicity is sometimes convenient for benchmarking. The sec-
ond is a variable-order, variable-timestep Adams–Moulton solver,
using functional iteration for its nonlinear solve step. The third
is a variable-order, variable-timestep Backwards Differentiation
Formula solver, with Newton iteration for its nonlinear solve. The
AM and BDF solvers both use implementations from the CVODE
package [31,32].
6. Sample output and performance analysis

One simple example that demonstrates some of the capa-
bilities of MITNS, and which can be used to benchmark the
performance of the code, is the accumulation of impurities in
the presence of a mass-dependent potential. In the limit where
∇Ts/Ts is small compared to ∇ns/ns, different species’ density
profiles are analytically expected [41,42] to satisfy(
naeΦa/Ta

)1/Za

∝

(
nbeΦb/Tb

)1/Zb
, (45)

here Φs is the total potential applied to species s. Consider
scenario in which an initially uniform plasma composed of
ydrogen and helium-4 is subjected to a potential Φs(t, x) given
y

s(t, x) = −
msg0L

π
tanh4

(
t

tramp

)
cos

(
πx
L

)
(46)

or some potential strength parameter g0 and ramp time tramp.
he time dependence is chosen to be smooth and so that the
otential will saturate after t ≈ tramp. The behavior of the ion
ensities can be seen in Fig. 2, with tramp = 300Ω−1

p0 and g0 =

p0vthp0/100. Fig. 3 shows the agreement between these profiles
nd the predictions from Eq. (45).
Similar scenarios can showcase the tunable physics discussed

n Section 4. For instance, consider an initially homogeneous mix
f deuterium and tritium, with the same potential described in
q. (46) but with g0 = Ωp0vthp0/10. Results with and without
hermal conductivity are shown in Figs. 4 and 5, respectively.
he simulations without conductivity essentially show the spatial
istribution of the heat source terms. Very similar MITNS simu-
ations, both with and without heat conductivity, were used in
ef. [30]. Ref. [30] was a study of heat transport effects in rotat-
ng and compressing systems; applications included magnetized
ompression experiments like MagLIF. In that study, simulations
ithout the heat conductivity were used to validate and illus-
rate analytic calculations that did not include the conductivity.
imulations that included heat conductivity made it possible to
uantify the error associated with neglecting those terms.
Simulations of scenarios like these – with a mixture of two

on species and a potential given by Eq. (46) – can be used to
enchmark the numerical performance of the code. The spatial
nd temporal discretization of the system of equations will each
e associated with some numerical error. The error from the
emporal evolution can be controlled with tolerance parame-
ers passed to CVODE and is essentially independent from the
mplementation of MITNS itself. The error from the spatial dis-
retization, on the other hand, is set by the second-order finite
olume scheme described in Section 5.
To evaluate the code’s performance, we conducted simulations

n increasingly fine grids in powers of two, from N = 4 to
= 512. Simulations were performed for a 70% Hydrogen–

0% Helium mix, in a system with L/ρLp = 20, where ρLp is the
haracteristic proton Larmor radius. We then calculated both the
stimated error and runtime associated with these simulations.
To estimate error, we calculated the pseudoerror, which does

ot require knowing the analytical solution to the problem. To
alculate the pseudoerror, the finest grid (in our case, N = 512) is
aken to represent the canonical solution; we then calculate error
elative to these points. To facilitate such analysis, the output of
ITNS is edge-centered; thus, the spatial point xn associated with

he nth gridpoint on a grid with N cells (and N + 1 edges) is the
ame as the spatial point x2n on a grid with 2N cells (and 2N + 1
dges). Thus, every point on a coarse grid has a corresponding
oint on the finest grid. For a function y(t, x) on this grid, with
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Fig. 2. Density evolution of a plasma containing a mix of hydrogen and helium-4 in a gravitational potential. The time coordinate is normalized to one thousand
proton gyroperiods and the spatial coordinate is normalized to a proton gyroradius (evaluated at the characteristic magnetic field B0 , density n0 , and temperature T0
described earlier). This figure shows the relative motion of the ions described by Eq. (45), where the ion species with the higher m/Z initially falls in the potential
while the species the lower m/Z initially rises. Later, the simulation begins to show both species fall as collisions between ions and electrons become important.
This simulation used a ramp-up time of 300Ω−1

p0 for the potential. After that, the ions equilibrate with one another on a characteristic timescale that scales like
ν−1
ss′ L

2/ρ2
Ls . Electron–ion frictional equilibration takes about 80 times longer than ion–ion equilibration, so we do not see full electron–ion equilibrium here, but the

system begins to move toward it.
Fig. 3. This figure shows how the ion density profiles at a particular timeslice (t ≈ 1200Ω−1
p0 ) correspond to the analytic prediction given by Eq. (45). The green

urve shows the simulated hydrogen profile. The magenta shows the simulated helium-4 profile. The dashed cyan curve shows the helium-4 profile that would be
redicted by combining Eq. (45) with the simulated hydrogen profile. The simulated and predicted helium-4 profiles show good agreement. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)
umerical solutions yti,xj and corresponding finest-grid solutions
ti,xi , the pseudoerror ϵ(N) is then given by:

(N) =
1
V

∑
i,j

√(
yti,xj − Yti,xi

)2
. (47)

Here, V is the total number of points in t and x that are summed
over. For the purpose of this analysis, we calculated the pseudoer-
ror for the variables nH , pH , and vxH . The result of this pseudoerror
analysis is shown in Fig. 6. While both the Adams–Moulton and
BDF schemes initially converge as ϵ(N) ∼ N−2, as expected for a
second-order scheme, they converge more slowly above N = 64.
This slowing convergence is particularly pronounced for the BDF
method.

The corresponding runtime results (from a 2019 15’’ Macbook
Pro) for the same simulations are shown in Fig. 7. The runtime
initially increases as T ∼ N1.6 with the number of cells, with
AM running slightly faster. For large grids, however, the BDF runs
much faster, scaling as T ∼ N after N = 64.
For large grids, the BDF scheme runs faster but with higher
error than the AM scheme. It is thus natural to compare the error
scaling with runtime for both methods, which is shown in Fig. 8.
The relative speed of the BDF method for large grids is more
pronounced than its relative increase in error, so that the BDF
method has better error-vs-runtime performance.

Interestingly, the deviation from N−2 error convergence at
large grid sizes appears to be related to diffusion-like terms,
specifically the viscosity and thermal conductivity. Since these
are tunable parameters, we can turn them off; doing so results
in N−2 convergence to larger grid sizes (Fig. 9). Exactly why the
errors and runtimes scale this way at large N is a matter of active
research. However, for the vast majority of problems, grid sizes
N ≤ 64 will be more than sufficient to get results to the desired
accuracy.

It is important to emphasize that the results we have shown
are for a special class of potentials that are smooth and continu-
ous at the boundaries, taking into account the periodicity of the
potential. When the potential is not smooth at each boundary,
as for a constant gravitational field with potential Φs ∝ |x|, the
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Fig. 4. The evolution of a mixture of deuterium and tritium under a mass-dependent potential. The four panels are (a) the deuterium density, (b) the tritium density,
(c) the deuterium temperature, and (d) the tritium temperature. This simulation includes the full classical heat conductivity.
Fig. 5. This simulation shows the same scenario as Fig. 4, but with the classical heat conductivity suppressed. As before, the panels are (a) the deuterium density,
(b) the tritium density, (c) the deuterium temperature, and (d) the tritium temperature.
A
b

Fig. 6. Pseudoerror vs. number of grid points in MITNS simulations, for several
variables, for both Adams–Moulton and BDF integrators. The black line repre-
sents a scaling of y ∼ N−2 . The pseudoerror initially scales as ϵ(N) ∼ N−2 , but
this convergence slows around N = 64. The slowing is more pronounced for the
BDF method.
Fig. 7. Runtime vs. grid size for each integration method. The black dashed line
represents an N1.6 scaling, while the dark gray solid line represents N1 scaling.
lthough both methods initially scale as N1.6 , the BDF integrator runtime scaling
ecomes linear at N = 64.
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Fig. 8. Combined data from Figs. 6 and 7, showing pseudoerror vs. runtime for
each integration method. The black solid line represents a scaling of T ∼ N−1 .
Because the BDF method runs faster but with less accuracy than the AM method
for large grids, the error vs. runtime is comparable for the two methods.

Fig. 9. Pseudoerror vs. number of grid points in MITNS simulations, as in Fig. 6,
ut with viscosity and thermal conductivity turned off. The black line represents
scaling of y ∼ N−2 . The pseudoerror is reduced by almost an order of
agnitude relative to the case with the diffusive terms.

nalytic solution for the density and pressure will also not be
mooth at the boundary, and so there will be error introduced
y the reflection conditions for the ghost cells. This leads to
lightly slower runtimes and much greater error (Fig. 10). How-
ver, this error is strongly concentrated in the endpoints, so that
he solution at other points remains robust.

An alternate implementation of the boundary conditions (not
urrently included in the main version of the code), which linearly
xtrapolates the values of cell-centered variables at the outer-
oundary edges from the neighboring inner values, seems to
mprove the error associated with non-periodic potentials. Of
ourse, for practical purposes, it is already relatively straightfor-
ard to reduce the error to acceptable levels without having to
o to an excessively large grid.

. Discussion

In its current form, MITNS is focused on a particular niche:
he detailed fluid treatment of classical cross-field transport in
plasma with multiple ion species. The code is not designed to

nclude the effects of turbulence or of transport in the direction
arallel to B (or, for that matter, transport in more than one of

the perpendicular directions). It is also not designed to study
the behavior of weakly magnetized or unmagnetized systems.
Fig. 10. Pseudoerror vs. number of grid points in MITNS simulations, as in Fig. 6,
but for a constant gravitational potential Φs ∝ |x|. Dashed lines show error
considering all grid points, while solid lines exclude the two points closest to
the boundaries. The error for n and P is much greater than the smooth case,
due to the discontinuous forces at the boundaries, but this error is strongly
concentrated in the boundary region.

With that in mind, MITNS has already begun to be useful for
problems within its purview [30]. As far as we are aware, there
is no established code in the field with the same capabilities.

Future development is unlikely to change the focus of the
code or its simple 1D geometry. However, there are a number of
possible avenues for future improvement of the code’s treatment
of cross-field transport. One possibility would be to add the
capability to simulate plasma undergoing compression. There are
a number of laboratory experiments that involve compressing
magnetized plasmas, and there is significant upside potential in
understanding and controlling differential ion transport in these
devices [43,44]. These upsides could include the control of fuel
mix and impurities in fusion devices and the control of high-Z
species in compression devices used for X-ray generation.

A similar extension would be to allow for a greater variety
of boundary conditions and source terms. This could make it
possible to model a greater variety of physical scenarios without
losing the geometric simplicity of the current code.

A third possibility would be to allow for transitions between
charge states as well as neutral particles. This could be particu-
larly important for plasma mass filters. These devices often rely
on collisional transport to achieve species separation, and they
tend to operate in regimes with significant populations of neutral
and partially ionized particles [13–17].

Finally, we could include the ẑ component of the momentum
equation. This would involve adding many additional viscous
and heating terms, but it would allow us to study transport in
geometries with sheared flows parallel to the magnetic field.
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ppendix. Viscosity in a simple slab

Consider a slab geometry with all gradients in the x̂ direction
nd all velocities in the x̂ and ŷ directions. Define

αβ
.
=

∂vα

∂xβ

+
∂vβ

∂xα

−
2
3
δαβ∇ · v, (A.1)

where δαβ is the Kronecker delta. In this simple geometry, Wαβ

becomes

Wαβ =
1
3

⎛⎝4 v′
x 3 v′

y 0
3 v′

y −2 v′
x 0

0 0 −2 v′
x

⎞⎠ , (A.2)

where v′
α = ∂vα/∂x. Then the Braginskii viscosity tensor [34] is

παβ =
1
6

⎛⎜⎝−2η0 v′
x − 6η1 v′

x − 6η3 v′
y −6η1 v′

y + 6η3 v′
x 0

−6η1 v′
y + 6η3 v′

x −2η0 v′
x + 6η1 v′

x + 6η3 v′
y 0

0 0 4η0 v′
x

⎞⎟⎠ ,

(A.3)

where for ions, to leading order in the inverse Hall parameter
ϵ

.
= νii/Ωi,

η0 =
0.96

√
2pi

νii
(A.4)

η1 =
3

10
√
2

νiipi
Ω2

i
(A.5)

η3 =
pi
2Ωi

. (A.6)

To leading order, keeping in mind that η1/η3 ∼ η3/η0 ∼ ϵ, the
iscous force density in this system is

·π = −x̂
∂

∂x

(
η0

3
∂vx

∂x
+η3

∂vy

∂x

)
− ŷ

∂

∂x

(
η1

∂vy

∂x
−η3

∂vx

∂x

)
. (A.7)

raginskii’s treatment was for a plasma with a single ion species.
hdanov [38] gives the generalizations of these coefficients to a
ultiple-ion plasma. The expression for ηi3 is identical to the one

ound in Braginskii. ηi1 becomes

i1 =
pi

4Ω2
i

∑
s

√
2mimsνis

(mi + ms)2

(
6
5
ms

mi
+ 2 −

4
5
ms

mi

Zi
Zs

)
. (A.8)

The expression for the multiple-species ηi0 involves more com-
licated numerical coefficients, which are described in detail by
hdanov [38]. However, like ηi1 and ηi3, the multiple-species form
f ηi0 scales in essentially the same way (e.g. in the combined ion
all parameter) as its single-species counterpart.
Of the four terms in Eq. (A.7), only the third is included in

ITNS. It plays a qualitatively significant role over the longest
imescales, since it prevents the system from fully relaxing until
y contains no shear. The other terms can reasonably be dropped.
The first term in Eq. (A.7) is negligible compared to the pres-

ure force. Define τn as the characteristic timescale over which
he ion density profiles evolve and define ℓ as the gradient scale
ength. The continuity equation implies that vix/ℓ ∼ 1/τn. Then

∂

∂x

(
ηi0

3
∂vx

∂x

)
∼

pi
ℓτnνii

(A.9)

whereas
∂pi
∂x

∼
pi
ℓ

. (A.10)

In other words, this part of the viscosity is negligible so long
as the ions collide many times over the timescale τn. This as-
sumption is already necessary in order to use a high-collisionality
closure.
The second term in Eq. (A.7) can be ignored for similar reasons.
If vthi is the characteristic thermal velocity of species i and ρLi is
the characteristic Larmor radius,

∂

∂x

(
ηi3

∂viy

∂x

)
∼

pi
ℓ

viy

vthi

ρLi

ℓ
. (A.11)

Barring extraordinarily fast flows in the ŷ direction, this will be
small compared to the pressure force density.

The fourth term in Eq. (A.7) is also small compared to the
pressure force density (even smaller than the first term was), but
since it is oriented in the ŷ direction, it is most useful to compare
it with another term in the ŷ momentum equation. This part of
the viscous force density scales like

∂

∂x

(
ηi3

∂vix

∂x

)
∼

pivix

Ωiℓ2
(A.12)

while the corresponding component of the v×B force scales like

ZienivixB ∼
pivix

Ωiρ
2
Li

. (A.13)

gain, the viscous term in question will be comparatively small.
oreover, neither this nor either of the other two terms in
q. (A.7) not included in MITNS have the same kind of qualitative
mportance that the third term does.

The leading-order viscous heating for species i is

visc = −πi : ∇vi (A.14)

=
ηi0

3

(
∂vix

∂x

)2

+ ηi1

(
∂viy

∂x

)2

. (A.15)

sing the continuity equation and defining τn in the same way as
efore,

ηi0

3

(
∂vx

∂x

)2

∼
pi

νiiτ 2
n

. (A.16)

Meanwhile, the compressional heating scales like

Qcompressional ∼
pi
τn

. (A.17)

So long as νiiτn ≫ 1, the vx-dependent term in Eq. (A.15) can be
neglected. The vy-dependent term will often also be small, but it
is less clear that it will be small in all cases, so it is included in
the code.

Of course, there is no reason why the code could not also in-
clude sub-dominant terms that we do not expect to be important.
Indeed, future versions may do so. But there are some advantages
in a simpler system of equations: they make the code easier to
implement and easier to test, and they make the code’s physics
output more straightforward to understand.
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